Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes

北极湖泊沉积物中甲烷营养菌的身份和活性随温度变化而变化

阅读:7
作者:Ruo He, Matthew J Wooller, John W Pohlman, John Quensen, James M Tiedje, Mary Beth Leigh

Abstract

Methane (CH(4)) flux to the atmosphere is mitigated via microbial CH(4) oxidation in sediments and water. As arctic temperatures increase, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is important to predicting future CH(4) emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), and pyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C, and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH(4) oxidation activity was measured in microcosm incubations containing sediments at all temperatures, with the highest CH(4) oxidation potential of 37.5 μmol g(-1) day(-1) in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and of the 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in (13)C-labeled DNA obtained by SIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisition from CH(4) in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature. Methylotrophs were also abundant in the microbial community that derived carbon from CH(4), especially in the deeper sediments (depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R = 0.82) with the relative abundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophic communities in arctic lake sediments respond to temperature variations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。