FoxP3 associates with enhancer-promoter loops to regulate Treg-specific gene expression

FoxP3 与增强子-启动子环路结合,调节 Treg 特异性基因表达

阅读:6
作者:Ricardo N Ramirez, Kaitavjeet Chowdhary, Juliette Leon, Diane Mathis, Christophe Benoist

Abstract

Gene expression programs are specified by higher-order chromatin structure and enhancer-promoter loops (EPLs). T regulatory cell (Treg) identity is dominantly specified by the transcription factor (TF) FoxP3, whose mechanism of action is unclear. We applied chromatin conformation capture with immunoprecipitation (HiChIP) in Treg and closely related conventional CD4+ T cells (Tconv). EPLs identified by H3K27Ac HiChIP showed a range of connection intensity, with some superconnected genes. TF-specific HiChIP showed that FoxP3 interacts with EPLs at a large number of genes, including some not differentially expressed in Treg versus Tconv, but enriched at the core Treg signature loci that it up-regulates. FoxP3 association correlated with heightened H3K27Ac looping, as ascertained by analysis of FoxP3-deficient Treg-like cells. There was marked asymmetry in the loci where FoxP3 associated at the enhancer- or the promoter-side of EPLs, with enrichment for different transcriptional cofactors. FoxP3 EPL intensity distinguished gene clusters identified by single-cell ATAC-seq as covarying between individual Tregs, supporting a direct transactivation model for FoxP3 in determining Treg identity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。