Zinc salicylate reduces airway smooth muscle cells remodelling by blocking mTOR and activating p21(Waf1/Cip1)

水杨酸锌通过阻断 mTOR 和激活 p21(Waf1/Cip1)减少气道平滑肌细胞重塑

阅读:4
作者:Lei Fang, Michael Roth, Chong Teck S'ng, Michael Tamm, Bo Han, Ba Xuan Hoang

Abstract

Asthma is characterized by chronic inflammation and tissue remodeling of the airways. Remodeling is resistant to pharmaceutical therapies. This study investigated the effect of zinc salicylate-methylsulfonylmethane (Zn-Sal-MSM) compared to zinc salicylate (Zn-Sal), or sodium salicylate (Na-Sal), or zinc chloride (ZnCl2) on remodeling parameters of human airway smooth muscle cells (ASMC). Human ASMC obtained from asthma patients (n=7) and non-asthma controls (n=7) were treated with one of the reagents. Cell proliferation and viability was determined by direct cell counts and MTT assay. The expression of and phosphorylation proteins was determined by Western-blotting, ELISA, immunofluorescence, and mass spectrometry. Extracellular matrix deposition by ELISA. Zn-Sal-MSM, Zn-Sal and Na-Sal (0.1-100 µg/mL) significantly reduced PDGF-BB-induced proliferation in a concentration dependent manner, while ZnCl2 was toxic. The reduced proliferation correlated with increased expression of the cell cycle inhibitor p21(Waf1/Cip1), and reduced activity of Akt, p70S6K, and Erk1/2. Zn-Sal-MSM, Zn-Sal, but not Na-Sal reduced the deposition of fibronectin and collagen type-I. Furthermore, Zn-Sal-MSM reduced the mitochondria specific COX4 expression. Mass spectrometry indicated that Zn-Sal-MSM modified the expression of several signaling proteins and zinc-dependent enzymes. In conclusion, Zn-Sal-MSM and Zn-Sal potentially prevent airway wall remodeling in asthma by inhibition of both the Erk1/2 and mTOR signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。