Profile of 5-HT2A receptor involved in signaling cascades associated to intracellular inflammation and apoptosis in hepatocytes and its role in carbon tetrachloride-induced hepatotoxicity

5-HT2A 受体参与肝细胞内炎症和细胞凋亡相关信号级联的概况及其在四氯化碳诱导的肝毒性中的作用

阅读:5
作者:Yuxin Zhang, Yizhou Wang, Kun Zhang, Xiurui Liang, Jing Guan, Jiaqi Jin, Yi Zhang, Fan Xu, Lin Yang, Jihua Fu

Abstract

Previously, we found that the 5-HT2A receptor plays a key role in cell injury. However, the mechanism by which the 5-HT2A receptor mediates intracellular processes remains unclear. In this study, we aimed to clarify this intracellular process in hepatocyte LO2 cells and evaluate its role in CCl4-induced hepatotoxicity in mice. In vitro, both the agonist and overexpression of 5-HT2A receptor could promote 5-HT degradation by upregulating the expression of 5-HT synthases and monoamine oxidase-A (MAO-A) to cause overproduction of ROS in mitochondria. We refer to this as the activation of the 5-HT degradation system (5DS) axis, which leads to the phosphorylation of JNK, p38 MAPK, STAT3, and NF-κB; upregulation of Bax, cleaved-caspase3, and cleaved-caspase9; and downregulation of Bcl-2, followed by apoptosis and oversecretion of TNF-α and IL-1β in cells. This phenomenon could be markedly blocked by the 5-HT2A receptor antagonist, MAO-A inhibitor, or gene-silencing MAO-A. Through protein kinases C epsilon (PKCε) agonist treatment and gene silencing of the PKCε and 5-HT2A receptor, we demonstrated that the 5-HT2A receptor controls 5-HT synthases and MAO-A expression via the PKCε pathway in cells. Unexpectedly, we discovered that PKCε-mediated phosphorylation of the AKT/mTOR pathway is also a consequence of the activation of the 5DS axis. Furthermore, we confirmed that the inhibition of the 5DS axis using the 5-HT2A receptor antagonist could prevent hepatotoxicity induced by CCl4 both in vitro and in vivo, inhibiting the aforementioned signaling cascades, inflammation, and apoptosis, and that the 5DS activation area overlapped the necrotic area of mouse liver. Taken together, we revealed a 5DS axis in hepatocytes that controls the signaling cascades associated with inflammation and apoptosis and confirmed its role in CCl4-induced hepatotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。