Interleukin 8 is differently expressed and modulated by PAR-1 activation in early and late endothelial progenitor cells

白细胞介素 8 在早期和晚期内皮祖细胞中的表达和受 PAR-1 激活的调节不同

阅读:6
作者:David M Smadja, Ivan Bièche, Sophie Susen, Laetitia Mauge, Ingrid Laurendeau, Clément d'Audigier, Françoise Grelac, Joseph Emmerich, Martine Aiach, Pascale Gaussem

Abstract

The proinflammatory chemokine interleukin 8 exerts potent angiogenic effects on endothelial cells by interacting with its receptors CXCR1 and CXCR2. As thrombin is also a potent inflammatory factor, and as endothelial progenitor cells (EPC) express functional PAR-1 thrombin receptor, we examined whether PAR-1 stimulation interferes with the IL-8 pathway in EPC. EPC were obtained from adult blood (AB) and cord blood (CB). The effect of PAR-1 stimulation by the peptide SFLLRN on IL-8, CXCR1 and CXCR2 expression was examined by RTQ-PCR and at the protein level in AB and CB late EPC and in AB early EPC. Specific siRNA was used to knock down PAR-1 expression. The IL-8 gene was expressed strongly in AB early EPC and moderately in late EPC. In contrast, CXCR1 and CXCR2 gene expression was restricted to AB early EPC. The IL-8 level in AB early EPC conditioned medium was high in basal conditions and did not change after PAR-1 activation. By contrast, IL-8 secretion by late EPC was low in basal conditions and strongly up-regulated upon PAR-1 activation. PAR-1 activation induced a number of genes involved in activating protein-1 (AP-1) and nuclear factor (NF)-kappaB pathways. Conditioned medium of PAR-1-activated late EPC enhanced the migratory potential of early EPC, and this effect was abrogated by blocking IL-8. Target-specific siRNA-induced PAR-1 knockdown, and fully inhibited PAR-1-induced IL-8 synthesis. In conclusion, PAR-1 activation induces IL-8 synthesis by late EPC. This could potentially enhance cooperation between late and early EPC during neovascularization, through a paracrine effect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。