MicroRNA181c inhibits prostate cancer cell growth and invasion by targeting multiple ERK signaling pathway components

MicroRNA181c 通过靶向多个 ERK 信号通路成分抑制前列腺癌细胞的生长和侵袭

阅读:4
作者:Zhengzheng Su, Mengni Zhang, Miao Xu, Xinglan Li, Junya Tan, Yunyi Xu, Xiuyi Pan, Ni Chen, Xueqin Chen, Qiao Zhou

Background

The ERK signaling pathway is frequently deregulated in tumorigenesis, mostly by classical mechanisms such as gene mutation of its components (eg, RAS and RAF). However, whether and how multiple key components of ERK pathway are regulated by microRNAs are not clear.

Conclusions

Downregulation of miR181c results in deregulated ERK signaling and promotes prostate cancer cell growth and metastasis.

Methods

We firstly predicted post-transcriptional regulation of multiple key components of the ERK signaling pathway by miR181c through bioinformatics analysis, and then confirmed the post-transcriptional regulation by dual luciferase reporter gene assays and Western blot analysis. The biological effects of miR181c on prostate cancer cell proliferation, apoptosis, migration, and invasion were measured by CCK-8 assay, flow cytometry, wound scratch assay, transwell cell migration, and invasion assays.

Results

miR181c post-transcriptionally regulated multiple key members of the ERK signaling pathway, including extracellular signal-regulated kinase 2 (ERK2), ribosomal S6 kinase 2 (RSK2), serum response factor (SRF), and FBJ murine osteosarcoma viral oncogene homolog (c-Fos). Ectopic expression of miR181c mimics effectively suppressed prostate cancer cell proliferation, migration, and invasion, but promoted cell apoptosis. Furthermore, miR181c treatment combined with the multi-kinase inhibitor sorafenib significantly enhanced these anti-tumor effects. Conclusions: Downregulation of miR181c results in deregulated ERK signaling and promotes prostate cancer cell growth and metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。