µ-Opioid receptors inhibit the exercise pressor reflex by closing N-type calcium channels but not by opening GIRK channels in rats

µ-阿片受体通过关闭大鼠的 N 型钙通道来抑制运动加压反射,而不是通过打开 GIRK 通道来抑制运动加压反射

阅读:5
作者:Juan A Estrada, Marc P Kaufman

Abstract

µ-Opioid G protein-coupled receptors (MOR) interact with ion channels to decrease neuronal excitability. In humans, intrathecal administration of the MOR agonist fentanyl inhibits the exercise pressor reflex, an effect that can be attributed to either the opening of inward rectifying potassium channels (GIRK) or the closing of N-type calcium channels. The purpose of this study was to determine if the highly selective MOR agonist [d-Ala2, N-MePhe4,Gly-ol]-enkephalin (DAMGO) attenuates the exercise pressor reflex and which of these two channels are responsible for this effect. In decerebrate rats, we determined the effect of intrathecal injection of either tertiapin-LQ, which blocks the GIRK channel or ω-conotoxin-GVIA, which blocks the N-type calcium channel on the exercise pressor reflex, which was evoked by contracting the triceps surae muscles. Initially, we established that intrathecal injection of DAMGO inhibited the exercise pressor reflex relative to no intrathecal injection or intrathecal saline injection ( P < 0.001, n = 5). We then found that intrathecal injection of two doses of tertiapin-LQ (1 and 10 µg) had no effect on the exercise pressor reflex ( n = 6 and n = 7, respectively; P > 0.05). Importantly, neither dose of tertiapin-LQ prevented the DAMGO-induced inhibition of the exercise pressor reflex. Last, we found that intrathecal injection of ω-conotoxin-GVIA markedly attenuated the exercise pressor reflex ( P < 0.001, n = 7). The cardioaccelerator response to contraction did not appear to be effected in any of the experiments. We conclude that N-type voltage-gated calcium channel inhibition appears to be the mechanism by which MOR activation inhibits the exercise pressor reflex in decerebrate rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。