Biodegraded PCl and gelatin fabricated vascular patch in rat aortic and inferior vena cava angioplasty

生物降解 PCl 和明胶制成的血管补片在大鼠主动脉和下腔静脉血管成形术中的应用

阅读:6
作者:Hualong Bai, Boao Xie, Mingxing Li, Peng Sun, Shunbo Wei, Liwei Zhang, Cong Zhang

Abstract

Novel synthetic prosthesis materials for patch angioplasty are continuously under development and optimization. When a nonwoven-based gelatin membrane is coupled with an electrospun layer of polycaprolactone (PCL), these biohybrid polymer membranes (BHMs) possess higher mechanical properties in aqueous environments. We hypothesized that BHMs can also be used as vascular patches, and we tested our hypothesis in a rat IVC venoplasty and aortic arterioplasty model. Patch venoplasty and arterioplasty were performed in SD rats (200 g), the patches were harvested at day 14, and samples were analyzed by immunohistochemistry and immunofluorescence. The BHM patches were almost degraded, with few parts remaining after 14 days. There was a line of CD34- and nestin-positive cells on the endothelium, with some cells were CD34 and nestin dual-positive, macrophages and leukocytes also participated in the patch healing process. There were PCNA-positive cells in the neointima and peri-patch area, with some cells were also PCNA and α-actin dual-positive. Arterial neointimal endothelial cells were Ephrin-B2- and dll-4-positive, and venous neointimal endothelial cells were Eph-B4- and COUP-TFII-positive. BHM shares a similar healing process like other patch materials, and BHM may have potential applications in vascular surgery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。