S-adenosyl-l-homocysteine hydrolase links methionine metabolism to the circadian clock and chromatin remodeling

S-腺苷-l-同型半胱氨酸水解酶将蛋氨酸代谢与昼夜节律和染色质重塑联系起来

阅读:7
作者:Carolina Magdalen Greco, Marlene Cervantes, Jean-Michel Fustin, Kakeru Ito, Nicholas Ceglia, Muntaha Samad, Jiejun Shi, Kevin Brian Koronowski, Ignasi Forne, Suman Ranjit, Jonathan Gaucher, Kenichiro Kinouchi, Rika Kojima, Enrico Gratton, Wei Li, Pierre Baldi, Axel Imhof, Hitoshi Okamura, Paolo Sass

Abstract

Circadian gene expression driven by transcription activators CLOCK and BMAL1 is intimately associated with dynamic chromatin remodeling. However, how cellular metabolism directs circadian chromatin remodeling is virtually unexplored. We report that the S-adenosylhomocysteine (SAH) hydrolyzing enzyme adenosylhomocysteinase (AHCY) cyclically associates to CLOCK-BMAL1 at chromatin sites and promotes circadian transcriptional activity. SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases, and timely hydrolysis of SAH by AHCY is critical to sustain methylation reactions. We show that AHCY is essential for cyclic H3K4 trimethylation, genome-wide recruitment of BMAL1 to chromatin, and subsequent circadian transcription. Depletion or targeted pharmacological inhibition of AHCY in mammalian cells markedly decreases the amplitude of circadian gene expression. In mice, pharmacological inhibition of AHCY in the hypothalamus alters circadian locomotor activity and rhythmic transcription within the suprachiasmatic nucleus. These results reveal a previously unappreciated connection between cellular metabolism, chromatin dynamics, and circadian regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。