Duration of ATP reduction affects extent of CA1 cell death in rat models of fluid percussion injury combined with secondary ischemia

ATP 减少持续时间对大鼠液压冲击损伤合并继发性缺血模型中 CA1 细胞死亡程度的影响

阅读:6
作者:Naoki Aoyama, Stefan M Lee, Nobuhiro Moro, David A Hovda, Richard L Sutton

Abstract

Secondary ischemia (SI) following traumatic brain injury (TBI) increases damage to the brain in both animals and humans. The current study determined if SI after TBI alters the extent or duration of reduced energy production within the first 24 h post-injury and hippocampal cell loss at one week post-injury. Adult male rats were subjected to sham injury, lateral (LFPI) or central fluid percussion injury (CFPI) only, or to combined LFPI or CFPI with SI. The SI was 8 min of bilateral forebrain ischemia combined with hemorrhagic hypotension, applied at 1 h following FPI. After LFPI alone adenosine triphosphate (ATP) levels within the ipsilateral CA1 were reduced at 2 h (p < 0.05) and subsequently recovered. After LFPI+SI the ATP reductions in CA1 ipsilateral to FPI persisted for 24 h (p < 0.01). ATP levels in the contralateral CA1 were not affected by LFPI alone or LFPI+SI. After CFPI alone CA1 ATP levels were depressed bilaterally only at 2 h (p < 0.05). Similar to the LFPI paradigm, CFPI+SI reduced ATP levels for 24 h (p < 0.01), with bilateral ATP reductions seen after CFPI+SI. Cell counts in the CA1 region at 7 days post-injury revealed no significant neuronal cell loss after LFPI or CFPI alone. Significant neuronal cell loss was present only within the ipsilateral (p < 0.001) CA1 after LFPI+SI, but cell loss was bilateral (p < 0.001) after CFPI+SI. Thus, SI prolongs ATP reductions induced by LFPI and CFPI within the CA1 region and this SI-induced energy reduction appears to adversely affect regional neuronal viability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。