Bidirectional multiciliated cell extrusion is controlled by Notch driven basal extrusion and Piezo 1 driven apical extrusion

双向多纤毛细胞挤压由 Notch 驱动的基底挤压和 Piezo 1 驱动的顶端挤压控制

阅读:6
作者:Rosa Ventrella, Sun K Kim, Jennifer Sheridan, Aline Grata, Enzo Bresteau, Osama Hassan, Eve E Suva, Peter Walentek, Brian Mitchell

Abstract

Xenopus embryos are covered with a complex epithelium containing numerous multiciliated cells (MCCs). During late stage development there is a dramatic remodeling of the epithelium that involves the complete loss of MCCs. Cell extrusion is a well-characterized process for driving cell loss while maintaining epithelial barrier function. Normal cell extrusion is typically unidirectional whereas bidirectional extrusion is often associated with disease (e.g. cancer). We describe two distinct mechanisms for MCC extrusion, a basal extrusion driven by Notch signaling and an apical extrusion driven by Piezo1. Early in the process there is a strong bias towards basal extrusion, but as development continues there is a shift towards apical extrusion. Importantly, receptivity to the Notch signal is age-dependent and governed by the maintenance of the MCC transcriptional program such that extension of this program is protective against cell loss. In contrast, later apical extrusion is regulated by Piezo 1 such that premature activation of Piezo 1 leads to early extrusion while blocking Piezo 1 leads to MCC maintenance. Distinct mechansms for MCC loss underlie the importance of their removal during epithelial remodeling. Summay statement: Cell extrusion typically occurs unidirectionally. We have identified a single population of multiciliated cells that extrudes bidirectionally: Notch-driven basal extrusion and Piezo 1-mediated apical extrusion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。