Long-Read Genome Assembly and Gene Model Annotations for the Rodent Malaria Parasite Plasmodium yoelii 17XNL

啮齿动物疟原虫约氏疟原虫 17XNL 的长读基因组组装和基因模型注释

阅读:8
作者:Mitchell J Godin, Aswathy Sebastian, Istvan Albert, Scott E Lindner

Abstract

Malaria causes over 200 million infections and over 600 thousand fatalities each year, with most cases attributed to a human-infectious Plasmodium species, Plasmodium falciparum . Many rodent-infectious Plasmodium species, like Plasmodium berghei, Plasmodium chabaudi , and Plasmodium yoelii , have been used as genetically tractable model species that can expedite studies of this pathogen. In particular, P. yoelii is an especially good model for investigating the mosquito and liver stages of parasite development because key attributes closely resemble those of P. falciparum . Because of its importance to malaria research, in 2002 the 17XNL strain of P. yoelii was the first rodent malaria parasite to be sequenced. While sequencing and assembling this genome was a breakthrough effort, the final assembly consisted of >5000 contiguous sequences that impacted the creation of annotated gene models. While other important rodent malaria parasite genomes have been sequenced and annotated since then, including the related P. yoelii 17X strain, the 17XNL strain has not. As a result, genomic data for 17X has become the de facto reference genome for the 17XNL strain while leaving open questions surrounding possible differences between the 17XNL and 17X genomes. In this work, we present a high-quality genome assembly for P. yoelii 17XNL using HiFi PacBio long-read DNA sequencing. In addition, we use Nanopore long-read direct RNA-seq and Illumina short-read sequencing of mixed blood stages to create complete gene models that include not only coding sequences but also alternate transcript isoforms, and 5' and 3' UTR designations. A comparison of the 17X and this new 17XNL assembly revealed biologically meaningful differences between the strains due to the presence of coding sequence variants. Taken together, our work provides a new genomic and gene expression framework for studies with this commonly used rodent malaria model species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。