Chidamide and mitomycin C exert synergistic cytotoxic effects against bladder cancer cells in vitro and suppress tumor growth in a rat bladder cancer model

西达本胺和丝裂霉素 C 在体外对膀胱癌细胞发挥协同细胞毒作用,并抑制大鼠膀胱癌模型中的肿瘤生长

阅读:7
作者:Shao-Chuan Wang, Chia-Ying Yu, Yao-Cheng Wu, Ya-Chuan Chang, Sung-Lang Chen, Wen-Wei Sung

Abstract

Intravesical instillation (IVI) of Bacillus Calmette-Guerin (BCG) can prevent bladder cancer recurrence, but this agent has been out of stock in recent years. IVI of other agents, like chidamide, a histone deacetylase (HDAC) inhibitor, may have the potential to exert a therapeutic effect against bladder cancer by modifying the gene expression profiles associated with histone modifications that occur during cancer tumorigenesis. Here, we investigated the in vitro therapeutic effect of chidamide and/or mitomycin C in bladder cancer cell lines and screened related molecular pathways using an antibody array. We also quantitatively analyzed the synergistic effect of IVI of chidamide and mitomycin C in vivo in an N-methyl-N-nitrosourea (MNU)-induced rat bladder cancer model. The synergistic cytotoxic effect of chidamide plus mitomycin C was confirmed in both T24 and UMUC3 cells, with significantly greater induction of apoptosis elicited with chidamide plus mitomycin C than with either drug alone. The antibody array identified the Axl signaling pathway as the key target of the synergistic effect. Expression of Axl and its related downstream molecules, including claspin and survivin, was significantly suppressed. In the rat bladder cancer model, IVI of chidamide plus mitomycin C reduced tumor burden (Ki67 index) to a greater extent than either drug alone. Our results suggest that chidamide and mitomycin act synergistically to reduce MNU-induced bladder cancer. These findings provide new insights into a new and potentially effective approach to treating bladder cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。