Targeting HOXA11-AS to mitigate prostate cancer via the glycolytic metabolism: In vitro and in vivo

靶向 HOXA11-AS 通过糖酵解代谢减轻前列腺癌:体外和体内

阅读:6
作者:Jiankang Zhang, Sailian Li, Mengyu Zhang, Zhenting Wang, Zengshu Xing

Abstract

As oncogenes or oncogene suppressors, long-stranded non-coding RNAs are essential for the formation and progression of human tumours. However, the mechanisms behind the regulatory role of RNA HOXA11-AS in prostate cancer (PCa) are unclear. PCa is a common malignant tumour worldwide, and an increasing number of studies have focused on its metabolic profile. Studies have shown that the long non-coding RNA (lncRNA) HOXA11-AS is aberrantly expressed in many tumours. However, the role of HOXA11-AS in PCa is unclear. This work aimed to determine how HOXA11-AS regulated PCa in vitro and in vivo. We first explored the clinical role of HOXA11-AS in PCa using bioinformatics methods, including single sample gene set enrichment analysis (ssGSEA), weighted gene co-expression network analysis (WGCNA), and least absolute shrinkage and selection operator (LASSO)-logistics systematically. In this study, PCa cell lines were selected to assess the PCa regulatory role of HOXA11-AS overexpression versus silencing in vitro, and tumour xenografts were performed in nude mice to assess tumour suppression by HOXA11-AS silencing in vivo. HOXA11-AS expression was significantly correlated with clinicopathological factors, epithelial-mesenchymal transition (EMT) and glycolysis. Moreover, key genes downstream of HOXA11-AS exhibited good clinical diagnostic properties for PCa. Furthermore, we studied both in vitro and in vivo effects of HOXA11-AS expression on PCa. Overexpression of HOXA11-AS increased PCa cell proliferation, migration and EMT, while silencing HOXA11-AS had the opposite effect on PCa cells. In addition, multiple metabolites were downregulated by silencing HOXA11-AS via the glycolytic pathway. HOXA11-AS silencing significantly inhibited tumour development in vivo. In summary, silencing HOXA11-AS can inhibit PCa by regulating glucose metabolism and may provide a future guidance for the treatment of PCa.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。