Sulfiredoxin-1 Inhibits PDGF-BB-Induced Vascular Smooth Muscle Cell Proliferation and Migration by Enhancing the Activation of Nrf2/ARE Signaling

Sulfiredoxin-1 通过增强 Nrf2/ARE 信号的激活来抑制 PDGF-BB 诱导的血管平滑肌细胞增殖和迁移

阅读:5
作者:Haijie Jiang, Yueyan Zhao, Panyang Feng, Yan Liu

Abstract

Sulfiredoxin1 (Srxn1), an endogenous antioxidant protein, is involved in cardiovascular diseases. In this study, we aimed to investigate the role of Srxn1 in VSMCs and its molecular mechanism. The murine vascular smooth muscle cells MOVAS were treated with different doses of platelet-derived growth factor-BB (PDGF-BB); then, Srxn1 expression was detected using reverse transcription-quantitative polymerase chain reaction and western blot analysis. MTT and wound healing assay were used to examine the effect of Srxn1 on MOVAS cell proliferation and migration. Reactive oxygen species (ROS) production, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in MOVAS cells were detected using corresponding commercial kits. Moreover, the expression of proliferating cell nuclear antigen (PCNA), matrix metalloproteinase 2 (MMP-2), and nuclear factor erythroid-2-related factor 2 (Nrf2) /antioxidant response element (ARE) signaling-related proteins was detected using western blot analysis. In our study, PDGF-BB dose-dependently increased Srxn1 expression in MOVAS cells, and Srxn1 expression was increased with time dependence in PDGF-BB-treated MOVAS cells. The knockdown of Srxn1 increased PDGF-BB-induced the proliferation, migration, ROS production, MDA level, and the protein expression of PCNA and MMP-2, as well as decreased SOD activity and the expression of Nrf2/ARE signaling-related proteins in PDGF-BB-stimulated MOVAS cells. However, the overexpression of Srxn1 showed the opposite results to those of knockdown of Srxn1. Moreover, the inhibitory effects of Srxn1 overexpression on PDGF-BB induced proliferation, migration, ROS production, and MDA level and the promotion of Srxn1 overexpression on PDGF-BB induced SOD activity were partially reversed by the knockdown of Nrf2. Srxn1 inhibited PDGF-BB-induced proliferation, migration, and oxidative stress through activating Nrf2/ARE signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。