A single amino acid substitution controls DAF-dependent phenotype of echovirus 11 in rhabdomyosarcoma cells

单个氨基酸替代控制横纹肌肉瘤细胞中埃可病毒 11 的 DAF 依赖性表型

阅读:5
作者:Alexey V Novoselov, Alexey V Rezaykin, Alexander G Sergeev, Fedor A Fadeyev, Julia V Grigoryeva, Zoya I Sokolova

Abstract

Decay accelerating factor (DAF, CD55) is used by DAF-dependent (Daf+) variants of echovirus 11 (EV11) as a primary cellular receptor. The interaction of EV11 with DAF is completely reversible, therefore DAF-dependent variants require an unidentified coreceptor to initiate uncoating. Daf- variants of EV11, which do not interact with DAF, use an alternative primary cellular receptor. The aim of this study was to test the hypothesis whether the coreceptor, which is necessary for the uncoating of DAF-dependent variants, may act as an alternative primary receptor for the Daf- variants of EV11. By using the model of the two closely related daf+ and daf- clones of EV11 in rhabdomyosarcoma (RD) cell line, it was shown that a single amino acid substitution in the capsid protein VP2 could control the expression of the DAF-dependent phenotype. Anti-DAF monoclonal antibody has blocked the infection of RD cells by the DAF-dependent daf+ clone, but not by the daf- clone of EV11. Since the structural proteins of the two clones differed only in the receptor binding site for DAF, the unidentified non-DAF primary receptor for the daf- clone might have the same conformation as the uncoating coreceptor required for the daf+ clone. Despite the difference in primary receptors, both daf+ and daf- clones were equally inhibited by a monoclonal antibody to beta2-microglobulin. The monoclonal antibody B9.12.1 to class I human leukocyte antigen molecules showed no inhibitory effect in regards to either clone. The hypothesis of convergent intracellular traffic of Daf+ and Daf- variants of EV11 is discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。