The Alginate Layer for Improving Doxorubicin Release and Radiolabeling Stability of Chitosan Hydrogels

海藻酸盐层可改善壳聚糖水凝胶的阿霉素释放和放射性标记稳定性

阅读:8
作者:Jeong Il Kwon #, Chang-Moon Lee #, Hwan-Seok Jeong, Phil-Sun Oh, Hyosook Hwang, Seok Tae Lim, Myung-Hee Sohn, Hwan-Jeong Jeong

Conclusions

The formation of alginate layer on the surface of the DI-CSH is useful for improving the drug release behavior and radiolabeling stability.

Methods

Chitosan was chemically modified using a chelator for I-131 labeling. After labeling of I-131 and mixing of Dox, the chitosan solution was dropped into tripolyphosphate (TPP) solution using an electrospinning system to prepare spherical microhydrogels. The DI-CSH were immersed into alginate solution for 30 min to form the crosslinking layer on their surface. The formation of alginate layer on the DI-CSH was confirmed by Fourier transform infrared spectroscopy (FT-IR) and zeta potential analysis. In order to investigate the effect of alginate layer, studies of in vitro Dox release from the hydrogels were performed in phosphate buffered in saline (PBS, pH 7.4) at 37 °C for 12 days. The radiolabeling stability of the hydrogels was evaluated using ITLC under different experimental condition (human serum, normal saline, and PBS) at 37 °C for 12 days.

Purpose

Chitosan hydrogels (CSH) formed through ionic interaction with an anionic molecule are suitable as a drug carrier and a tissue engineering scaffold. However, the initial burst release of drugs from the CSH due to rapid swelling after immersing in a biofluid limits their wide application as a drug delivery carrier. In this study, alginate layering on the surface of the doxorubicin (Dox)-loaded and I-131-labeled CSH (DI-CSH) was performed. The effect of the alginate layering on drug release behavior and radiolabeling stability was investigated.

Results

Formatting the alginate-crosslinked layer on the CSH surface did not change the spherical morphology and the mean diameter (150 ± 10 μm). FT-IR spectra and zeta potential values indicate that alginate layer was formed successfully on the surface of the DI-CSH. In in vitro Dox release studies, the total percentage of the released Dox from the DI-CSH for 12 days were 60.9 ± 0.8, 67.3 ± 1.4, and 71.8 ± 2.5 % for 0.25, 0.50, and 1.00 mg Dox used to load into the hydrogels, respectively. On the other hand, after formatting alginate layer, the percentage of the released Dox for 12 days was decreased to 47.6 ± 1.4, 51.1 ± 1.4, and 57.5 ± 1.6 % for 0.25, 0.50, and 1.00 mg Dox used, respectively. The radiolabeling stability of DI-CSH in human serum was improved by alginate layer. Conclusions: The formation of alginate layer on the surface of the DI-CSH is useful for improving the drug release behavior and radiolabeling stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。