Intracranial self-stimulation reverses impaired spatial learning and regulates serum microRNA levels in a streptozotocin-induced rat model of Alzheimer disease

颅内自我刺激可逆转链脲佐菌素诱发的阿尔茨海默病大鼠模型中受损的空间学习能力并调节血清微小 RNA 水平

阅读:8
作者:Andrea Riberas-Sánchez, Irene Puig-Parnau, Laia Vila-Solés, Soleil Garcia-Brito, Laura Aldavert-Vera, Pilar Segura-Torres, Gemma Huguet, Elisabet Kádár

Background

The assessment of deep brain stimulation (DBS) as a therapeutic alternative for treating Alzheimer disease (AD) is ongoing. We aimed to determine the effects of intracranial self-stimulation at the medial forebrain bundle (MFB-ICSS) on spatial memory, neurodegeneration, and serum expression of microRNAs (miRNAs) in a rat model of sporadic AD created by injection of streptozotocin. We hypothesized that MFB-ICSS would reverse the behavioural effects of streptozotocin and modulate hippocampal neuronal density and serum levels of the miRNAs.

Conclusion

Spatial memory performance, hippocampal neurodegeneration, and serum levels of miR-let-7b and miR-181c were affected by MFB-ICSS under AD-like conditions. Our results validate the MFB as a potential target for DBS and lend support to the use of specific miRNAs as promising biomarkers of the effectiveness of DBS in combatting AD-associated cognitive deficits.

Methods

We performed Morris water maze and light-dark transition tests. Levels of various proteins, specifically amyloid-β precurser protein (APP), phosphorylated tau protein (pTAU), and sirtuin 1 (SIRT1), and neurodegeneration were analyzed by Western blot and Nissl staining, respectively. Serum miRNA expression was measured by reverse transcription polymerase chain reaction.

Results

Male rats that received streptozotocin had increased hippocampal levels of pTAU S202/T205, APP, and SIRT1 proteins; increased neurodegeneration in the CA1, dentate gyrus (DG), and dorsal tenia tecta; and worse performance in the Morris water maze task. No differences were observed in miRNAs, except for miR-181c and miR-let-7b. After MFB-ICSS, neuronal density in the CA1 and DG regions and levels of miR-181c in streptozotocin-treated and control rats were similar. Rats that received streptozotocin and underwent MFB-ICSS also showed lower levels of miR-let-7b and better spatial learning than rats that received streptozotocin without MFB-ICSS. Limitations: The reversal by MFB-ICSS of deficits induced by streptozotocin was fairly modest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。