Computationally designed peptide inhibitors of protein-protein interactions in membranes

计算设计的膜中蛋白质-蛋白质相互作用的肽抑制剂

阅读:6
作者:Gregory A Caputo, Rustem I Litvinov, Wei Li, Joel S Bennett, William F Degrado, Hang Yin

Abstract

We recently reported a computational method (CHAMP) for designing sequence-specific peptides that bind to the membrane-embedded portions of transmembrane proteins. We successfully applied this method to design membrane-spanning peptides targeting the transmembrane domains of the alpha IIb subunit of integrin alpha IIbbeta 3. Previously, we demonstrated that these CHAMP peptides bind specifically with reasonable affinity to isolated transmembrane helices of the targeted transmembrane region. These peptides also induced integrin alpha IIbbeta 3 activation due to disruption of the helix-helix interactions between the transmembrane domains of the alpha IIb and beta 3 subunits. In this paper, we show the direct interaction of the designed anti-alpha IIb CHAMP peptide with isolated full-length integrin alpha IIbbeta 3 in detergent micelles. Further, the behavior of the designed peptides in phospholipid bilayers is essentially identical to their behavior in detergent micelles. In particular, the peptides assume a membrane-spanning alpha-helical conformation that does not disrupt bilayer integrity. The activity and selectivity of the CHAMP peptides were further explored in platelets, comfirming that anti-alpha IIb activates wild-type alpha IIbbeta 3 in whole cells as a result of its disruption of the protein-protein interactions between the alpha and beta subunits in the transmembrane regions. These results demonstrate that CHAMP is a successful chemical biology approach that can provide specific tools for probing the transmembrane domains of proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。