Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease

基于网络的 iPSC 衍生细胞筛选揭示了心脏瓣膜疾病的治疗候选药物

阅读:4
作者:Christina V Theodoris, Ping Zhou, Lei Liu, Yu Zhang, Tomohiro Nishino, Yu Huang, Aleksandra Kostina, Sanjeev S Ranade, Casey A Gifford, Vladimir Uspenskiy, Anna Malashicheva, Sheng Ding, Deepak Srivastava

Abstract

Mapping the gene-regulatory networks dysregulated in human disease would allow the design of network-correcting therapies that treat the core disease mechanism. However, small molecules are traditionally screened for their effects on one to several outputs at most, biasing discovery and limiting the likelihood of true disease-modifying drug candidates. Here, we developed a machine-learning approach to identify small molecules that broadly correct gene networks dysregulated in a human induced pluripotent stem cell (iPSC) disease model of a common form of heart disease involving the aortic valve (AV). Gene network correction by the most efficacious therapeutic candidate, XCT790, generalized to patient-derived primary AV cells and was sufficient to prevent and treat AV disease in vivo in a mouse model. This strategy, made feasible by human iPSC technology, network analysis, and machine learning, may represent an effective path for drug discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。