Plant synthetic GP4 and GP5 proteins from porcine reproductive and respiratory syndrome virus elicit immune responses in pigs

来自猪繁殖与呼吸综合征病毒的植物合成 GP4 和 GP5 蛋白可在猪体内引发免疫反应

阅读:6
作者:Chul Han An, Salik Nazki, Sung-Chul Park, Yu Jeong Jeong, Ju Huck Lee, Su-Jin Park, Amina Khatun, Won-Il Kim, Youn-Il Park, Jae Cheol Jeong, Cha Young Kim

Abstract

We demonstrated successful overexpression of porcine reproductive and respiratory syndrome virus (PRRSV)-derived GP4D and GP5D antigenic proteins in Arabidopsis. Pigs immunized with transgenic plants expressing GP4D and GP5D proteins generated both humoral and cellular immune responses to PRRSV. Porcine reproductive and respiratory syndrome virus (PRRSV) causes PRRS, the most economically significant disease affecting the swine industry worldwide. However, current commercial PRRSV vaccines (killed virus or modified live vaccines) show poor efficacy and safety due to concerns such as reversion of virus to wild type and lack of cross protection. To overcome these problems, plants are considered a promising alternative to conventional platforms and as a vehicle for large-scale production of recombinant proteins. Here, we demonstrate successful production of recombinant protein vaccine by expressing codon-optimized and transmembrane-deleted recombinant glycoproteins (GP4D and GP5D) from PRRSV in planta. We generated transgenic Arabidopsis plants expressing GP4D and GP5D proteins as candidate antigens. To examine immunogenicity, pigs were fed transgenic Arabidopsis leaves expressing the GP4D and GP5D antigens (three times at 2-week intervals) and then challenged with PRRSV at 6-week post-initial treatment. Immunized pigs showed significantly lower lung lesion scores and reduced viremia and viral loads in the lung than pigs fed Arabidopsis leaves expressing mYFP (control). Immunized pigs also had higher titers of PRRSV-specific antibodies and significantly higher levels of pro-inflammatory cytokines (TNF-α and IL-12). Furthermore, the numbers of IFN-γ+-producing cells were higher, and those of regulatory T cells were lower, in GP4D and GP5D immunized pigs than in control pigs. Thus, plant-derived GP4D and GP5D proteins provide an alternative platform for producing an effective subunit vaccine against PRRSV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。