DNA damage-mediated cellular senescence promotes hand-foot syndrome that can be relieved by thymidine prodrug

DNA损伤介导的细胞衰老促进手足综合征,可通过胸苷前药缓解

阅读:5
作者:Bingxue Yang, Xinran Xie, Zhaoyu Wu, Dazhao Lv, Jiajun Hu, Yuyun Chen, Jiaxing Li, Shuyue Luo, Jiacheng Li, Jie Luo, Shiyi Zhang

Abstract

Hand-foot syndrome (HFS) is a widely recognized dose-limiting cutaneous toxicity effect of fluoropyrimidine chemotherapy agents that impairs clinical benefits and treatment outcomes. Even though the cause and pathophysiology of HFS are relatively widely reported, how the toxicity of fluoropyrimidine translates into persistent inflammation has not been studied. Additionally, prevention and treatment strategies for HFS based on its mechanistic occurrence and development are scarce. In our study, we demonstrated that cGAS-STING signaling pathway-mediated cellular senescence played a critical role in the inflammatory reaction and provided a therapeutic solution for HFS. Mechanistically, DNA damage, as the primary cytotoxic cause, in keratinocytes induces cell cycle arrest, activates the cGAS-STING signaling pathway, and subsequently mediates cellular senescence, ultimately fueling a robust secondary inflammatory response that results in HFS. More importantly, the thymidine prodrug thymidine diacetate was proven to be effective in preventing HFS by compensating for thymidylate deficiency to facilitate the replication and repair of DNA and thus causing the escape from cellular senescence. These data highlight the importance of DNA damage-mediated cellular senescence in the etiology of HFS and provide a potential therapeutic anchor point for fluoropyrimidine-induced HFS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。