The Negative Regulative Roles of BdPGRPs in the Imd Signaling Pathway of Bactrocera dorsalis

BdPGRPs对橘小实蝇Imd信号通路的负调控作用

阅读:6
作者:Ping Zhang, Zhichao Yao, Shuai Bai, Hongyu Zhang

Abstract

Peptidoglycan recognition proteins (PGRPs) are key regulators in insects' immune response, functioning as sensors to detect invading pathogens and as scavengers of peptidoglycan (PGN) to reduce immune overreaction. However, the exact function of PGRPs in Bactrocera dorsalis is still unclear. In this study, we identified and functionally characterized the genes BdPGRP-LB, BdPGRP-SB1 and BdPGRP-SC2 in B. dorsalis. The results showed that BdPGRP-LB, BdPGRP-SB1 and BdPGRP-SC2 all have an amidase-2 domain, which has been shown to have N-Acetylmuramoyl-l-Alanine amidase activity. The transcriptional levels of BdPGRP-LB and BdPGRP-SC2 were both high in adult stages and midgut tissues; BdPGRP-SB1 was found most abundantly expressed in the 2nd instar larvae stage and adult fat body. The expression of BdPGRP-LB and BdPGRP-SB1 and AMPs were significantly up-regulated after injury infected with Escherichia coli at different time points; however, the expression of BdPGRP-SC2 was reduced at 9 h, 24 h and 48 h following inoculation with E. coli. By injection of dsRNA, BdPGRP-LB, BdPGRP-SB1 and BdPGRP-SC2 were knocked down by RNA-interference. Silencing of BdPGRP-LB, BdPGRP-SB1 and BdPGRP-SC2 separately in flies resulted in over-activation of the Imd signaling pathway after bacterial challenge. The survival rate of the ds-PGRPs group was significantly reduced compared with the ds-egfp group after bacterial infection. Taken together, our results demonstrated that three catalytic PGRPs family genes, BdPGRP-LB, BdPGRP-SB1 and BdPGRP-SC2, are important negative regulators of the Imd pathway in B. dorsalis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。