Carbon-1 versus Carbon-3 Linkage of d-Galactose to Porphyrins: Synthesis, Uptake, and Photodynamic Efficiency

d-半乳糖与卟啉的碳-1 和碳-3 键:合成、吸收和光动力效率

阅读:7
作者:Patrícia M R Pereira, Waqar Rizvi, N V S Dinesh K Bhupathiraju, Naxhije Berisha, Rosa Fernandes, João P C Tomé, Charles Michael Drain

Abstract

The use of glycosylated compounds is actively pursued as a therapeutic strategy for cancer due to the overexpression of various types of sugar receptors and transporters on most cancer cells. Conjugation of saccharides to photosensitizers such as porphyrins provides a promising strategy to improve the selectivity and cell uptake of the photosensitizers, enhancing the overall photosensitizing efficacy. Most porphyrin-carbohydrate conjugates are linked via the carbon-1 position of the carbohydrate because this is the most synthetically accessible approach. Previous studies suggest that carbon-1 galactose derivatives show diminished binding since the hydroxyl group in the carbon-1 position of the sugar is a hydrogen bond acceptor in the galectin-1 sugar binding site. We therefore synthesized two isomeric porphyrin-galactose conjugates using click chemistry: one linked via the carbon-1 of the galactose and one linked via carbon-3. Free base and zinc analogs of both conjugates were synthesized. We assessed the uptake and photodynamic therapeutic (PDT) activity of the two conjugates in both monolayer and spheroidal cell cultures of four different cell lines. For both the monolayer and spheroid models, we observe that the uptake of both conjugates is proportional to the protein levels of galectin-1 and the uptake is suppressed after preincubation with an excess of thiogalactose, as measured by fluorescence spectroscopy. Compared to that of the carbon-1 conjugate, the uptake of the carbon-3 conjugate was greater in cell lines containing high expression levels of galectin-1. After photodynamic activation, MTT and lactate dehydrogenase assays demonstrated that the conjugates induce phototoxicity in both monolayers and spheroids of cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。