Exploring the role of disulfidptosis-related signatures in immune microenvironment, prognosis and therapeutic strategies of cervical cancer

探索二硫键凋亡相关信号在宫颈癌免疫微环境、预后及治疗策略中的作用

阅读:5
作者:Tianzhe Jin, Taotao Yin, Ruiyi Xu, Hong Liu, Shuo Yuan, Yite Xue, Jianwei Zhang, Hui Wang

Background

Cervical cancer is characterized by a complex immunosuppressive tumor microenvironment (TME). Disulfidptosis is a recently identified form of programmed cell death that has emerged as a crucial factor in tumorigenesis. However, the research on the specific involvement of disulfidptosis within the TME is still in its early stages.

Conclusion

Our research proposed a prognostic model for cervical cancer, probably contributing to tumor microenvironment traits and more potent immunotherapy strategy exploration.

Methods

Under glucose starvation, SiHa and HeLa cells underwent experiments employing diverse cell death inhibitors and SLC7A11 knockdown to observe their impact on cell survival. TCGA-CESC cohort was subjected to consensus clustering for disulfidptosis-related clusters. Prognosis, function, immune infiltration, and differentially expressed genes (DEGs) evaluations among clusters were compared. A prognostic model based on DEGs and disulfidptosis regulator genes (DRGs) was constructed and internally and externally validated. The correlation between YWHAG and clinicopathological characteristics in cervical cancer patients was investigated at both the mRNA and protein levels. Proliferation and migration assays were performed to uncover the roles of YWHAG in cervical cancer.

Results

Experimental validation confirmed disulfidptosis in cervical cancer cell lines. Cervical cancer patients were classified into three clusters based on DRGs, showing notably improved prognosis and increased immune infiltration in cluster B. The developed disulfidptosis-related prognostic model effectively stratified patients into high- and low-risk groups. Low-risk patients exhibited more favorable responses to immunotherapy and improved overall prognosis. Additionally, YWHAG, recognized as a tumor-promoting gene, demonstrated active roles in enhancing the growth, migration, and invasion of cervical cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。