The protective effects of Olmesartan against interleukin-29 (IL-29)-induced type 2 collagen degradation in human chondrocytes

奥美沙坦对白细胞介素-29(IL-29)诱导的人类软骨细胞2型胶原降解的保护作用

阅读:9
作者:Yunlong Liu, Junyi Liu, Yan Ma, Yongyong Zhang, Qiong Chen, Xin Yang, Yanchun Shang

Abstract

Osteoarthritis (OA) is a cartilage degenerative disease commonly observed in the elderly population and is pathologically characterized by the degradation of the cartilage extracellular matrix (ECM). Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) are critical enzymes involved in the degradation of ECM. Olmesartan is an inhibitor of the angiotensin II receptor developed for the treatment of hypertension, and recent studies show that it exerts anti-inflammatory effects in arthritis. The present study aimed to investigate the mechanism of the protective effect of Olmesartan on cartilage ECM degradation. Interleukin-29 (IL-29) is a novel inflammatory mediator involved in the inflammation and degradation of cartilage in OA, and human T/C-28a2 cells treated with it were the inflammatory model in vitro. We found that the degradation of type 2 collagens and aggrecans was induced by IL-29, accompanied by the upregulation of MMPs and ADAMTSs, but the presence of Olmesartan significantly ameliorated these increases. In addition, Olmesartan abolished IL-29- induced oxidative stress and elevated the expression level of TNF receptor-associated factor 6 (TRAF-6). Mechanistically, we showed that Olmesartan suppressed IL-29- caused inhibitor kappa B α (IκBα) expression and nuclear translocation of nuclear factor kappa-B (NF-κB) p65, indicating it suppressed the activation of the NF-κB pathway. Collectively, our data reveal that Olmesartan exerted a protective function on IL-29- induced type 2 collagen degradation in human chondrocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。