Formation of Pseudomonas aeruginosa Biofilms in Full-thickness Scald Burn Wounds in Rats

大鼠全层烫伤创面铜绿假单胞菌生物膜的形成

阅读:9
作者:Kenneth S Brandenburg, Alan J Weaver Jr, S L Rajasekhar Karna, Tao You, Ping Chen, Shaina Van Stryk, Liwu Qian, Uzziel Pineda, Johnathan J Abercrombie, Kai P Leung

Abstract

Using Sprague-Dawley rats (350-450 g; n = 61) and the recently updated Walker-Mason rat scald burn model, we demonstrated that Pseudomonas aeruginosa readily formed biofilms within full-thickness burn wounds. Following the burn, wounds were surface-inoculated with P. aeruginosa in phosphate-buffered saline (PBS), while sterile PBS was used for controls. On post-burn days 1, 3, 7, and 11, animals were euthanized and samples collected for quantitative bacteriology, bacterial gene expression, complete blood cell counts, histology, and myeloperoxidase activity. Robust biofilm infections developed in the full-thickness burn wounds inoculated with 1 × 104 CFU of P. aeruginosa. Both histology and scanning electron microscopy showed the pathogen throughout the histologic cross-sections of burned skin. Quantigene analysis revealed significant upregulation of alginate and pellicle biofilm matrix genes of P. aeruginosa within the burn eschar. Additionally, expression of P. aeruginosa proteases and siderophores increased significantly in the burn wound environment. Interestingly, the host's neutrophil response to the pathogen was not elevated in either the eschar or circulating blood when compared to the control burn. This new full-thickness burn biofilm infection model will be used to test new anti-biofilm therapies that may be deployed with soldiers in combat for immediate use at the site of burn injury on the battlefield.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。