Time series proteome profile analysis reveals a protective role of citrate synthase in angiotensin II-induced atrial fibrillation

时间序列蛋白质组分析揭示柠檬酸合酶在血管紧张素 II 诱发的心房颤动中的保护作用

阅读:4
作者:Fei Teng, Xiao Han, Peng Yu, Pang-Bo Li, Hui-Hua Li, Yun-Long Zhang

Background

Angiotensin (Ang) II and elevated blood pressure are considered to be the main risk factors for atrial fibrillation. However, the proteome profiles and key mediators/signaling pathways involved in the development of Ang II-induced atrial fibrillation remain unclear.

Conclusion

The current study defines the dynamic changes of the DEPs involved in Ang II-induced atrial fibrillation, and identifies that citrate synthase plays a protective role in regulating atrial fibrillation development, and increased citrate synthase expression may represent a potential therapeutic option for atrial fibrillation treatment.

Methods

Male wild-type C57BL/6 mice (10-week old) were infused with Ang II (2000 ng/kg per min) for 1, 2, or 3 weeks, respectively. Time series proteome profiling of atrial tissues was performed using isobaric tags for relative and absolute quantitation and liquid chromatography coupled with tandem mass spectrometry.

Results

We identified a total of 1566 differentially expressed proteins (DEPs) in the atrial tissues at weeks 1, 2, and 3 after Ang II infusion. These DEPs were predominantly involved in mitochondrial oxidation-reduction and tricarboxylic acid cycle in Ang II-infused atria. Moreover, coexpression network analysis revealed that citrate synthase, a rate-limiting enzyme in the tricarboxylic acid cycle, was localized at the center of the mitochondrial oxidation-reduction process, and its expression was significantly downreguated in Ang II-infused atria at different time points. Cardiomyocyte-specific overexpresion of citrate synthase markedly reduced atrial fibrillation susceptibility and atrial remodeling in mice. These beneficial effects were associated with increased ATP production and mitochondrial oxidative phosphorylation system complexes I-V expression and inhibition of oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。