Cell-based assays that predict in vivo neurotoxicity of urban ambient nano-sized particulate matter

基于细胞的检测方法预测城市环境纳米颗粒物的体内神经毒性

阅读:5
作者:Hongqiao Zhang, Amin Haghani, Amirhosein H Mousavi, Mafalda Cacciottolo, Carla D'Agostino, Nikoo Safi, Mohammad H Sowlat, Constantinos Sioutas, Todd E Morgan, Caleb E Finch, Henry Jay Forman

Abstract

Exposure to urban ambient particulate matter (PM) is associated with risk of Alzheimer's disease and accelerated cognitive decline in normal aging. Assessment of the neurotoxic effects caused by urban PM is complicated by variations of composition from source, location, and season. We compared several in vitro cell-based assays in relation to their in vivo neurotoxicity for NF-κB transcriptional activation, nitric oxide induction, and lipid peroxidation. These studies compared batches of nPM, a nanosized subfraction of PM2.5, extracted as an aqueous suspension, used in prior studies. In vitro activities were compared with in vivo responses of mice chronically exposed to the same batch of nPM. The potency of nPM varied widely between batches for NF-κB activation, analyzed with an NF-κB reporter in human monocytes. Three independently collected batches of nPM had corresponding differences to responses of mouse cerebral cortex to chronic nPM inhalation, for levels of induction of pro-inflammatory cytokines, microglial activation (Iba1), and soluble Aβ40 & -42 peptides. The in vitro responses of BV2 microglia for NO-production and lipid peroxidation also differed by nPM batch, but did not correlate with in vivo responses. These data confirm that batches of nPM can differ widely in toxicity. The in vitro NF-κB reporter assay offers a simple, high throughput screening method to predict the in vivo neurotoxic effects of nPM exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。