Regulation of adipogenesis by lymphatic fluid stasis: part I. Adipogenesis, fibrosis, and inflammation

淋巴液淤滞对脂肪生成的调节:第一部分脂肪生成、纤维化和炎症

阅读:12
作者:Jamie C Zampell, Seth Aschen, Evan S Weitman, Alan Yan, Sonia Elhadad, Marina De Brot Andrade, Babak J Mehrara

Background

Although fat deposition is a defining clinical characteristic of lymphedema, the cellular mechanisms that regulate this response remain unknown. The goals of this two-part study were to determine the effect of lymphatic fluid stasis on adipogenesis and inflammation (part I) and how these changes regulate the temporal and spatial expression of fat differentiation genes (part II).

Conclusions

The mouse-tail model has pathologic findings that are similar to clinical lymphedema, including fat deposition, fibrosis, and inflammation. Adipogenesis in response to lymphatic fluid stasis closely resembles this process in obesity. This model therefore provides an excellent means with which to study the molecular mechanisms that regulate the pathophysiology of lymphedema.

Methods

Adult female mice underwent tail lymphatic ablation and were euthanized 6 weeks after surgery (n = 20). Fat deposition, fibrosis, and inflammation were then analyzed in the regions of the tail exposed to lymphatic fluid stasis as compared with normal lymphatic flow.

Results

Lymphatic fluid stasis in the tail resulted in significant subcutaneous fat deposition, with a 2-fold increase in fat thickness (p < 0.01). In addition, lymphatic stasis was associated with subcutaneous fat fibrosis and collagen deposition. Adipogenesis in response to lymphatic fluid stasis was associated with a marked mononuclear cell inflammatory response (5-fold increase in CD45 cells; p < 0.001). In addition, the authors noted a significant increase in the number of monocytes/macrophages as identified by F4/80 immunohistochemistry (p < 0.001). Conclusions: The mouse-tail model has pathologic findings that are similar to clinical lymphedema, including fat deposition, fibrosis, and inflammation. Adipogenesis in response to lymphatic fluid stasis closely resembles this process in obesity. This model therefore provides an excellent means with which to study the molecular mechanisms that regulate the pathophysiology of lymphedema.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。