Determining direct binders of the Androgen Receptor using a high-throughput Cellular Thermal Shift Assay

使用高通量细胞热位移分析法确定雄激素受体的直接结合剂

阅读:6
作者:Joseph Shaw, Mathew Leveridge, Charlotta Norling, Jakob Karén, Daniel Martinez Molina, Daniel O'Neill, James E Dowling, Paul Davey, Suzanna Cowan, Michael Dabrowski, Martin Main, Davide Gianni

Abstract

Androgen Receptor (AR) is a key driver in prostate cancer. Direct targeting of AR has valuable therapeutic potential. However, the lack of disease relevant cellular methodologies capable of discriminating between inhibitors that directly bind AR and those that instead act on AR co-regulators has made identification of novel antagonists challenging. The Cellular Thermal Shift Assay (CETSA) is a technology enabling confirmation of direct target engagement with label-free, endogenous protein in living cells. We report the development of the first high-throughput CETSA assay (CETSA HT) to identify direct AR binders in a prostate cancer cell line endogenously expressing AR. Using this approach, we screened a pharmacology library containing both compounds reported to directly engage AR, and compounds expected to target AR co-regulators. Our results show that CETSA HT exclusively identifies direct AR binders, differentiating them from co-regulator inhibitors where other cellular assays measuring functional responses cannot. Using this CETSA HT approach we can derive apparent binding affinities for a range of AR antagonists, which represent an intracellular measure of antagonist-receptor Ki performed for the first time in a label-free, disease-relevant context. These results highlight the potential of CETSA HT to improve the success rates for novel therapeutic interventions directly targeting AR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。