Membrane cholesterol regulates inhibition and substrate transport by the glycine transporter, GlyT2

膜胆固醇通过甘氨酸转运蛋白 GlyT2 调节抑制和底物转运

阅读:3
作者:Zachary J Frangos, Katie A Wilson, Heather M Aitken, Ryan Cantwell Chater, Robert J Vandenberg, Megan L O'Mara

Abstract

Membrane cholesterol binds to and modulates the function of various SLC6 neurotransmitter transporters, including stabilizing the outward-facing conformation of the dopamine and serotonin transporters. Here, we investigate how cholesterol binds to GlyT2 (SLC6A5), modulates glycine transport rate, and influences bioactive lipid inhibition of GlyT2. Bioactive lipid inhibitors are analgesics that bind to an allosteric site accessible from the extracellular solution when GlyT2 adopts an outward-facing conformation. Using molecular dynamics simulations, mutagenesis, and cholesterol depletion experiments, we show that bioactive lipid inhibition of glycine transport is modulated by the recruitment of membrane cholesterol to a binding site formed by transmembrane helices 1, 5, and 7. Recruitment involves cholesterol flipping from its membrane orientation, and insertion of the 3' hydroxyl group into the cholesterol binding cavity, close to the allosteric site. The synergy between cholesterol and allosteric inhibitors provides a novel mechanism of inhibition and a potential avenue for the development of potent GlyT2 inhibitors as alternative therapeutics for the treatment of neuropathic pain and therapeutics that target other SLC6 transporters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。