Down syndrome is associated with altered frequency and functioning of tracheal multiciliated cells, and response to influenza virus infection

唐氏综合征与气管多纤毛细胞的频率和功能改变以及对流感病毒感染的反应有关。

阅读:2
作者:Samantha N Thomas ,Brian F Niemeyer ,Rocio J Jimenez-Valdes ,Alexander J Kaiser ,Joaquin M Espinosa ,Kelly D Sullivan ,Andrew Goodspeed ,James C Costello ,Jonathan K Alder ,Rodrigo Cañas-Arranz ,Adolfo García-Sastre ,Kambez H Benam

Abstract

Individuals with Down syndrome (DS) clinically manifest severe respiratory illnesses; however, there is a paucity of data on how DS influences homeostatic physiology of lung airway, and its reactive responses to pulmonary pathogens. We generated well-differentiated ciliated airway epithelia using tracheas from wild-type and Dp(16)1/Yey mice in vitro, and discovered that Dp(16)1/Yey epithelia have significantly lower abundance of ciliated cells, an altered ciliary beating profile, and reduced mucociliary transport. Interestingly, both sets of differentiated epithelia released similar quantities of viral particles after infection with influenza A virus (IAV). However, RNA-sequencing and proteomic analyses revealed an immune hyperreactive phenotype particularly for monocyte-recruiting chemokines in Dp(16)1/Yey epithelia. Importantly, when we challenged mice in vivo with IAV, we observed immune hyper-responsiveness in Dp(16)1/Yey mice, evidenced by higher quantities of lung airway infiltrated monocytes, and elevated levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid. Our findings illuminate mechanisms underlying DS-mediated pathophysiological changes in airway epithelium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。