Automated image analysis with the potential for process quality control applications in stem cell maintenance and differentiation

自动图像分析可用于干细胞维护和分化过程中的质量控制应用

阅读:4
作者:David Smith, Katie Glen, Robert Thomas

Abstract

The translation of laboratory processes into scaled production systems suitable for manufacture is a significant challenge for cell based therapies; in particular there is a lack of analytical methods that are informative and efficient for process control. Here the potential of image analysis as one part of the solution to this issue is explored, using pluripotent stem cell colonies as a valuable and challenging exemplar. The Cell-IQ live cell imaging platform was used to build image libraries of morphological culture attributes such as colony "edge," "core periphery" or "core" cells. Conventional biomarkers, such as Oct3/4, Nanog, and Sox-2, were shown to correspond to specific morphologies using immunostaining and flow cytometry techniques. Quantitative monitoring of these morphological attributes in-process using the reference image libraries showed rapid sensitivity to changes induced by different media exchange regimes or the addition of mesoderm lineage inducing cytokine BMP4. The imaging sample size to precision relationship was defined for each morphological attribute to show that this sensitivity could be achieved with a relatively low imaging sample. Further, the morphological state of single colonies could be correlated to individual colony outcomes; smaller colonies were identified as optimum for homogenous early mesoderm differentiation, while larger colonies maintained a morphologically pluripotent core. Finally, we show the potential of the same image libraries to assess cell number in culture with accuracy comparable to sacrificial digestion and counting. The data supports a potentially powerful role for quantitative image analysis in the setting of in-process specifications, and also for screening the effects of process actions during development, which is highly complementary to current analysis in optimization and manufacture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。