Glutathione-S-transferase omega 1 (GSTO1-1) acts as mediator of signaling pathways involved in aflatoxin B1-induced apoptosis-autophagy crosstalk in macrophages

谷胱甘肽-S-转移酶 omega 1 (GSTO1-1) 充当参与黄曲霉毒素 B1 诱导的巨噬细胞凋亡-自噬串扰的信号通路的介质

阅读:4
作者:Souren Paul, Rekha Jakhar, Monika Bhardwaj, Sun Chul Kang

Abstract

Aflatoxin B1 (AFB1) is the most toxic aflatoxin species and has been shown to be associated with specific as well as non-specific immune responses. In the present study, using murine macrophage Raw 264.7 cells as a model, we report that short exposure (6h) to AFB1 caused an increase in the cellular calcium pool in mitochondria, which in turn elevated reactive oxygen species (ROS)-mediated oxidative stress and led to loss of mitochondrial membrane potential and ultimately c-Jun N-terminal kinases (JNK)-mediated caspase-dependent cell death. On the contrary, longer exposure (12h) to AFB1 reduced JNK phosphorylation and cell death in macrophages. Measurement of autophagic flux demonstrated that autophagy induction through the canonical pathway was responsible for suppressing AFB1-induced apoptosis after 12h. As a detailed molecular mechanism, we found that the unfolded protein response (UPR) machinery was active at 12h post-exposure to AFB1 and induced cytoprotective autophagy as confirmed by determination of major autophagic markers. Inhibition of autophagy by Beclin-1 siRNA also resulted in JNK-mediated cell death. We further established that glutathione S transferase omega1-1 (GSTO1-1), a specific class of GST, was the responsible factor between apoptosis and autophagy crosstalk. Targeting of GSTO1-1 increased JNK-mediated apoptosis by 2-fold compared to the control, whereas autophagy rate was reduced. Thus, increased expression of GSTO1-1 was associated with increased protein glutathionylation, an important protein modification in response to cellular redox status.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。