Restraint Stress Intensifies Interstitial K(+) Accumulation during Severe Hypoxia

严重缺氧时束缚应激加剧间质 K(+) 蓄积

阅读:7
作者:Christian Schnell, Oliwia A Janc, Belinda Kempkes, Carolina Araya Callis, Gabriele Flügge, Swen Hülsmann, Michael Müller

Abstract

Chronic stress affects neuronal networks by inducing dendritic retraction, modifying neuronal excitability and plasticity, and modulating glial cells. To elucidate the functional consequences of chronic stress for the hippocampal network, we submitted adult rats to daily restraint stress for 3 weeks (6 h/day). In acute hippocampal tissue slices of stressed rats, basal synaptic function and short-term plasticity at Schaffer collateral/CA1 neuron synapses were unchanged while long-term potentiation was markedly impaired. The spatiotemporal propagation pattern of hypoxia-induced spreading depression episodes was indistinguishable among control and stress slices. However, the duration of the extracellular direct current potential shift was shortened after stress. Moreover, K(+) fluxes early during hypoxia were more intense, and the postsynaptic recoveries of interstitial K(+) levels and synaptic function were slower. Morphometric analysis of immunohistochemically stained sections suggested hippocampal shrinkage in stressed rats, and the number of cells that are immunoreactive for glial fibrillary acidic protein was increased in the CA1 subfield indicating activation of astrocytes. Western blots showed a marked downregulation of the inwardly rectifying K(+) channel Kir4.1 in stressed rats. Yet, resting membrane potentials, input resistance, and K(+)-induced inward currents in CA1 astrocytes were indistinguishable from controls. These data indicate an intensified interstitial K(+) accumulation during hypoxia in the hippocampus of chronically stressed rats which seems to arise from a reduced interstitial volume fraction rather than impaired glial K(+) buffering. One may speculate that chronic stress aggravates hypoxia-induced pathophysiological processes in the hippocampal network and that this has implications for the ischemic brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。