A novel prognostic signature of coagulation-related genes leveraged by machine learning algorithms for lung squamous cell carcinoma

利用机器学习算法预测肺鳞状细胞癌凝血相关基因的新型预后特征

阅读:5
作者:Guo-Sheng Li, Rong-Quan He, Zhi-Guang Huang, Hong Huang, Zhen Yang, Jun Liu, Zong-Wang Fu, Wan-Ying Huang, Hua-Fu Zhou, Jin-Liang Kong, Gang Chen

Abstract

Coagulation-related genes (CRGs) have been demonstrated to be essential for the development of certain tumors; however, little is known about CRGs in lung squamous cell carcinoma (LUSC). In this study, we adopted CRGs to construct a coagulation-related gene prognostic signature (CRGPS) using machine learning algorithms. Using a set of 92 machine learning integrated algorithms, the CRGPS was determined to be the optimal prognostic signature (median C-index = 0.600) for predicting the prognosis of an LUSC patient. The CRGPS was not only superior to traditional clinical parameters (e.g., T stage, age, and gender) and its commutative genes but also outperformed 19 preexisting prognostic signatures for LUSC on predictive accuracy. The CRGPS score was positively correlated with poor prognoses in patients with LUSC (hazard ratio > 1, p < 0.05), indicating its suitability as a prognostic marker for this disease. The CRGPS was observed to be inversely correlated with the degree of infiltration of natural killer cells. For some tumors, patients with lower CRGPS scores are more likely to experience enhanced immunotherapy effects (area under the curve = 0.70), which implies that the CRGPS can potentially predict immunotherapy efficacy. A high CRGPS score is predictive of an LUSC patient being sensitive to several drugs. Collectively, these findings indicate that the CRGPS may be a reliable indicator of the prognoses of patients with LUSC and may be useful for the clinical management of such patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。