Coreopsis tinctoria improves energy metabolism in obese hyperglycemic mice

金鸡菊改善肥胖高血糖小鼠的能量代谢

阅读:5
作者:Bingxin Huangfu, Minglan Yang, Jia Xu, Ruxin Gao, Yanzhou Hu, Yijia Zhao, Kunlun Huang, Xiaoyun He

Abstract

Coreopsis tinctoria (CT) improves energy metabolism. However, the role of CT in alleviating obesity-induced hyperglycemia by targeting the liver remains unknown. Therefore, this article aims to explore the mechanism by which CT improves energy metabolism and resists hyperglycemia. The water and ethanol extracts of CT were administered to high-fat diet-induced (HFD) obese C57BL/6J mice at a dose of 4 g/kg.bw (low-dose water extract, WL; low-dose ethanol extract, EL) or 10 g/kg.bw (high-dose water extract, WH; high-dose ethanol extract, EH). Mice that consumed a maintenance diet (LFD) were included as blank controls. Network pharmacology, liquid chromatography-mass spectrometry (LC-MS), L02 cell cultivation, and liver transcriptomics were used to examine the mechanism and functional components of CT against obesity-induced hyperglycemia. The results indicated that WL significantly (p < 0.05) alleviated glucose intolerance and insulin resistance in obesity-induced hyperglycemia. Kaempferol is the main active compound of CT, which demonstrated significant (p < 0.05) anti-hyperglycemic effects in obese mice and L02 cells. Finally, kaempferol significantly (p < 0.05; fold change >1.2) shifted the genes involved in carbon metabolism, glycolysis/gluconeogenesis, and the mitogen-activated protein kinase (MAPK) pathways toward the trend of LFD, indicating that it exerts an anti-hyperglycemic effect through these molecular mechanisms. Overall, oral intake of CT lowers blood glucose and improves insulin sensitivity in mice with obesity-induced hyperglycemia. Kaempferol is the primary functional component of CT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。