Flavin Reductase Contributes to Pneumococcal Virulence by Protecting from Oxidative Stress and Mediating Adhesion and Elicits Protection Against Pneumococcal Challenge

黄素还原酶通过保护免受氧化应激和介导粘附而增强肺炎球菌的毒性,并引发对肺炎球菌攻击的保护

阅读:9
作者:Giora I Morozov, Nurith Porat, Tatyana Kushnir, Hastyar Najmuldeen, Asad Adawi, Vered Chalifa-Caspi, Rachel Benisty, Ariel Ohayon, Ofir Liron, Shalhevet Azriel, Itai Malka, Shahar Dotan, Maxim Portnoi, Andrew A Piotrowski, Daniel Kafka, Barak Hajaj, Tali Fishilevich, Marilou Shagan, Michael Tal, Ron

Abstract

Pneumococcal flavin reductase (FlaR) is known to be cell-wall associated and possess age dependent antigenicity in children. This study aimed at characterizing FlaR and elucidating its involvement in pneumococcal physiology and virulence. Bioinformatic analysis of FlaR sequence identified three-conserved cysteine residues, suggesting a transition metal-binding capacity. Recombinant FlaR (rFlaR) bound Fe2+ and exhibited FAD-dependent NADP-reductase activity, which increased in the presence of cysteine or excess Fe2+ and inhibited by divalent-chelating agents. flaR mutant was highly susceptible to H2O2 compared to its wild type (WT) and complemented strains, suggesting a role for FlaR in pneumococcal oxidative stress resistance. Additionally, flaR mutant demonstrated significantly decreased mice mortality following intraperitoneal infection. Interestingly, lack of FlaR did not affect the extent of phagocytosis by primary mouse peritoneal macrophages but reduced adhesion to A549 cells compared to the WT and complemented strains. Noteworthy are the findings that immunization with rFlaR elicited protection in mice against intraperitoneal lethal challenge and anti-FlaR antisera neutralized bacterial virulence. Taken together, FlaR's roles in pneumococcal physiology and virulence, combined with its lack of significant homology to human proteins, point towards rFlaR as a vaccine candidate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。