Targeting the miR-122/PKM2 autophagy axis relieves arsenic stress

靶向 miR-122/PKM2 自噬轴可缓解砷应激

阅读:6
作者:Yu Wang, Hongjing Zhao, Menghao Guo, Dongxue Fei, Lina Zhang, Mingwei Xing

Abstract

Arsenic (As) is a natural hepatotoxicity inducer that is found ubiquitously in foods and environmental media. We found that arsenite exposure elicits autophagy in vivo and vitro, the specific role and regulatory mechanism of which are yet clear. MicroRNAs (miRNAs) are short noncoding RNAs that function in the posttranscriptional regulation of gene expression. Here, we report that miR-122, the most enriched constitutive miRNA in the liver, induced cell protective autophagy in arsenite-exposed hepatocytes. Arsenite exposure elevated miRNA-122 level and decreased the level of its target gene, PKM2. Under arsenic stress, overexpression of miR-122 significantly induced cell protective autophagy, characterized by lipidation of LC3-II and a corresponding consumption of p62. Conversely, autophagy inhibition by miR-122 knockdown was reversed by si-PKM2 cotransfection. We also found that miR-122 knockdown positively regulated the PI3K/Akt/mTOR pathway, and this phenomenon was reversed by cotransfecting cells with si-PKM2. Taken together, our findings show that the miR-122/PKM2 autophagy axis protects hepatocytes from arsenite stress via the PI3K/Akt/mTOR pathway; thus, miR-122 may be a potential candidate in the treatment of arseniasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。