Allele discovery of ten candidate drought-response genes in Austrian oak using a systematically informatics approach based on 454 amplicon sequencing

使用基于 454 扩增子测序的系统信息学方法发现奥地利橡树中的十个候选干旱反应基因的等位基因

阅读:7
作者:Andreas Homolka, Thomas Eder, Dieter Kopecky, Maria Berenyi, Kornel Burg, Silvia Fluch

Background

Rise of temperatures and shortening of available water as result of predicted climate change will impose significant pressure on long-lived forest tree species. Discovering allelic variation present in drought related genes of two Austrian oak species can be the key to understand mechanisms of natural selection and provide forestry with key tools to cope with future challenges.

Conclusions

We have characterized 183 alleles of drought related genes from oak species and detected first evidences of natural selection. Beside the potential for marker development, we have created an expandable bioinformatic pipeline for the analysis of next generation sequencing data.

Results

In the present study we have used Roche 454 sequencing and developed a bioinformatic pipeline to process multiplexed tagged amplicons in order to identify single nucleotide polymorphisms and allelic sequences of ten candidate genes related to drought/osmotic stress from sessile oak (Quercus robur) and sessile oak (Q. petraea) individuals. Out of these, eight genes of 336 oak individuals growing in Austria have been detected with a total number of 158 polymorphic sites. Allele numbers ranged from ten to 52 with observed heterozygosity ranging from 0.115 to 0.640. All loci deviated from Hardy-Weinberg equilibrium and linkage disequilibrium was found among six combinations of loci. Conclusions: We have characterized 183 alleles of drought related genes from oak species and detected first evidences of natural selection. Beside the potential for marker development, we have created an expandable bioinformatic pipeline for the analysis of next generation sequencing data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。