Liver fibrosis therapy based on biomimetic nanoparticles which deplete activated hepatic stellate cells

基于仿生纳米粒子消耗活化肝星状细胞的肝纤维化治疗

阅读:9
作者:Shenglong Xia, Zimo Liu, Jieru Cai, Huiming Ren, Qi Li, Hongfang Zhang, Jing Yue, Quan Zhou, Tianhua Zhou, Liangjing Wang, Xiangrui Liu, Xuefei Zhou

Abstract

Liver fibrosis is one of the most common liver diseases with substantial morbidity and mortality. However, effective therapy for liver fibrosis is still lacking. Considering the key fibrogenic role of activated hepatic stellate cells (aHSCs), here we reported a strategy to deplete aHSCs by inducing apoptosis as well as quiescence. Therefore, we engineered biomimetic all-trans retinoic acid (ATRA) loaded PLGA nanoparticles (NPs). HSC (LX2 cells) membranes, presenting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), were coated on the surface of the nanoparticles, while the clinically approved agent ATRA with anti-fibrosis ability was encapsulated in the inner core. The biomimetic coating of TRAIL-expressing HSC membranes does not only provide homologous targeting to HSCs, but also effectively triggers apoptosis of aHSCs. ATRA could induce quiescence of activated fibroblasts. While TM-NPs (i.e. membrane coated NPs without ATRA) and ATRA/NPs (i.e. non-coated NPs loaded with ATRA) only showed the ability to induce apoptosis and decrease the α-SMA expression in aHSCs, respectively, TM-ATRA/NPs induced both apoptosis and quiescence in aHSCs, ultimately leading to improved fibrosis amelioration in both carbon tetrachloride-induced and methionine and choline deficient L-amino acid diet induced liver fibrosis mouse models. We conclude that biomimetic TM-ATRA/NPs may provide a novel strategy for effective antifibrosis therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。