FUS reads histone H3K36me3 to regulate alternative polyadenylation

FUS 读取组蛋白 H3K36me3 来调节替代性多聚腺苷酸化

阅读:4
作者:Junqi Jia, Haonan Fan, Xinyi Wan, Yuan Fang, Zhuoning Li, Yin Tang, Yanjun Zhang, Jun Huang, Dong Fang

Abstract

Complex organisms generate differential gene expression through the same set of DNA sequences in distinct cells. The communication between chromatin and RNA regulates cellular behavior in tissues. However, little is known about how chromatin, especially histone modifications, regulates RNA polyadenylation. In this study, we found that FUS was recruited to chromatin by H3K36me3 at gene bodies. The H3K36me3 recognition of FUS was mediated by the proline residues in the ZNF domain. After these proline residues were mutated or H3K36me3 was abolished, FUS dissociated from chromatin and bound more to RNA, resulting in an increase in polyadenylation sites far from stop codons genome-wide. A proline mutation corresponding to a mutation in amyotrophic lateral sclerosis contributed to the hyperactivation of mitochondria and hyperdifferentiation in mouse embryonic stem cells. These findings reveal that FUS is an H3K36me3 reader protein that links chromatin-mediated alternative polyadenylation to human disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。