Use of Aligned Microscale Sacrificial Fibers in Creating Biomimetic, Anisotropic Poly(glycerol sebacate) Scaffolds

使用对齐的微尺度牺牲纤维创建仿生、各向异性聚(甘油癸二酸酯)支架

阅读:7
作者:Chen-Yu Li, Ming-Hsien Hu, Jin-Jia Hu

Abstract

Poly(glycerol sebacate) (PGS) is a biocompatible, biodegradable elastomer that has been shown promise as a scaffolding material for tissue engineering; it is still challenging, however, to produce anisotropic scaffolds by using a thermoset polymer, such as PGS. Previously, we have used aligned sacrificial poly(vinyl alcohol) (PVA) fibers to help produce an anisotropic PGS membrane; a composite membrane, formed by embedding aligned PVA fibers in PGS prepolymer, was subjected to curing and subsequent PVA removal, resulting in aligned grooves and cylindrical pores on the surface of and within the membrane, respectively. PVA, however, appeared to react with PGS during its curing, altering the mechanical characteristics of PGS. In this study, aligned sacrificial fibers made of polylactide (PLA) were used instead. Specifically, PLA was blend-electrospun with polyethylene oxide to increase the sacrificial fiber diameter, which in turn increased the size of the grooves and cylindrical pores. The resultant PGS membrane was shown to be in vitro cyto-compatible and mechanically anisotropic. The membrane's Young's modulus was 1-2 MPa, similar to many soft tissues. In particular, the microscale grooves on the membrane surface were found to be capable of directing cell alignment. Finally, based on the same approach, we fabricated a biomimetic, anisotropic, PGS tubular scaffold. The compliance of the tubular scaffold was comparable to native arteries and in the range of 2% to 8% per 100 mmHg, depending on the orientations of the sacrificial fibers. The anisotropic PGS tubular scaffolds can potentially be used in vascular tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。