Protective effect of 4-Methoxy benzyl alcohol on the neurovascular unit after cerebral ischemia reperfusion injury

对甲氧基苯甲醇对脑缺血再灌注损伤后血管神经单元的保护作用

阅读:6
作者:Fangyan He, Rong Dai, Xiaonan Zhou, Xiufang Li, Xuelan Song, Hanwen Yan, Qingting Meng, Cui Yang, Qing Lin

Conclusion

4-MA can play the role of anti-ischemic stroke drug by ameliorating the microenvironment of NVUs while its neuroprotective effects will contribute towards the inhibition of the antioxidant and anti-apoptotic activities.

Methods

First, we established a rat model of middle cerebral artery occlusion (MCAO) so as to use Western blot analysis, immunofluorescence and transmission electron microscopy (TEM) evaluating the NVU's protection of 4-MA. Then we established a primary cortical neuron model of oxygen glucose deprivation and re-oxygenation (OGD/R) with the objective of identifying whether 4-MA exhibited anti-oxidant and anti-apoptotic effects on neurons.

Objective

Cerebral ischemia reperfusion injury (CIRI) is a major cause of ischemic stroke (IS) deterioration. Considering the intricate mechanism of the pathological process of CIRI, most drugs only work on one target. The neurovascular unit (NVU) puts forward the concept of neuroprotection from nerve protection to global stabilization. The NVU plays an important role in maintaining the brain microenvironment. This would promote neuronal survival and overall neurological recovery, which would likely lead to the reduction of mortality rate. Previous studies have shown that 4-methoxy benzyl alcohol (4-MA) ameliorated neurological score and cerebral infarct volume and reduced the concentration of Evans blue (EB) in brain tissue. In this research, we investigated the effects of 4-MA on NVU microenvironment improvement in rats impaired by middle cerebral artery occlusion/reperfusion (MCAO/R).

Results

NVU ultra structural changes were improved by 4-MA. Immunofluorescence and western blot showed that 4-MA protected NVUs through enhancement of the expression of the symbolic neuronal proteins Microtubule Associated Protein-2(MAP-2), and attenuation of protein expression of Asy symbolic protein Glial Fibrillary Acidic Protein(GFAP). Furthermore, in the OGD/R model of I/R injury in vitro, 4-MA significantly increased Superoxide dismutase(SOD), Nitric Oxide(NO), B-cell lymphoma-2(Bcl-2), decreased Bcl-2-Associated X(Bax) and increased Bcl-2/Bax.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。