Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner

N-酰基乙醇胺在类风湿关节炎滑膜细胞中的抗炎作用由 TRPV1 和 TRPA1 以 COX-2 依赖的方式介导

阅读:5
作者:Torsten Lowin, Martin Apitz, Sven Anders, Rainer H Straub

Conclusions

N-acylethanolamines exert anti-inflammatory effects in SFs. A dual FAAH/COX-2 inhibitor, increasing N-acylethanolamine levels with concomitant TRP channel desensitization, might be a good candidate to inhibit the production of proinflammatory mediators of synovial cells and to reduce erosions.

Methods

Immunofluorescence and western blotting were used to detect cannabinoid receptors and related enzymes. Cytokines and MMP-3 were measured by ELISA. Intracellular signaling proteins were detected by proteome profiling. Proliferation was quantified by CTB reagent. Adhesion was assessed by the xCELLigence system. After onset of collagen type II arthritis, mice were treated daily with the FAAH inhibitor JNJ1661010 (20 mg/kg) or vehicle.

Results

IL-6, IL-8 and MMP-3 (determined only in synovial fibroblasts (SFs)) were downregulated in primary synoviocytes and SFs of RA and OA after AEA, PEA and OEA treatment. In SFs, this was due to activation of TRPV1 and TRPA1 in a COX-2-dependent fashion. FAAH inhibition increased the efficacy of AEA in primary synoviocytes but not in SFs. The effects of OEA and PEA on SFs were diminished by FAAH inhibition. Adhesion to fibronectin was increased in a CB1-dependent manner by AEA in OASFs. Furthermore, elevation of endocannabinoids ameliorated collagen-induced arthritis in mice. Conclusions: N-acylethanolamines exert anti-inflammatory effects in SFs. A dual FAAH/COX-2 inhibitor, increasing N-acylethanolamine levels with concomitant TRP channel desensitization, might be a good candidate to inhibit the production of proinflammatory mediators of synovial cells and to reduce erosions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。