Penetration and intracellular uptake of poly(glycerol-adipate) nanoparticles into three-dimensional brain tumour cell culture models

聚(甘油-己二酸酯)纳米粒子在三维脑肿瘤细胞培养模型中的渗透和细胞内摄取

阅读:7
作者:Weina Meng, Martin C Garnett, David A Walker, Terence L Parker

Abstract

Nanoparticle (NP) drug delivery systems may potentially enhance the efficacy of therapeutic agents. It is difficult to characterize many important properties of NPs in vivo and therefore attempts have been made to use realistic in vitro multicellular spheroids instead. In this paper, we have evaluated poly(glycerol-adipate) (PGA) NPs as a potential drug carrier for local brain cancer therapy. Various three-dimensional (3-D) cell culture models have been used to investigate the delivery properties of PGA NPs. Tumour cells in 3-D culture showed a much higher level of endocytic uptake of NPs than a mixed normal neonatal brain cell population. Differences in endocytic uptake of NPs in 2-D and 3-D models strongly suggest that it is very important to use in vitro 3-D cell culture models for evaluating this parameter. Tumour penetration of NPs is another important parameter which could be studied in 3-D cell models. The penetration of PGA NPs through 3-D cell culture varied between models, which will therefore require further study to develop useful and realistic in vitro models. Further use of 3-D cell culture models will be of benefit in the future development of new drug delivery systems, particularly for brain cancers which are more difficult to study in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。