Calcitriol induces estrogen receptor α expression through direct transcriptional regulation and epigenetic modifications in estrogen receptor-negative breast cancer cells

骨化三醇通过直接转录调控和表观遗传修饰诱导雌激素受体阴性乳腺癌细胞中雌激素受体α的表达

阅读:8
作者:Nancy Santos-Martínez, Lorenza Díaz, Victor M Ortiz-Ortega, David Ordaz-Rosado, Heriberto Prado-Garcia, Euclides Avila, Fernando Larrea, Rocío García-Becerra

Abstract

Patients with estrogen receptor (ER) α-negative breast tumors have a poor prognosis and are not suitable for hormone therapy. Previously, we demonstrated that calcitriol, the active metabolite of vitamin D, induces ERα expression and re-establishes the response to antiestrogens in ER-negative breast cancer cells. However, the mechanisms involved in this process have not been elucidated. Therefore, the present study was undertaken to investigate the mechanisms implicated in the calcitriol-induced ERα expression in ER-negative breast cancer cells. Using EMSA and ChIP assays, we found that the calcitriol/vitamin D receptor (VDR)/retinoic X receptor (RXR) complex binds to putative vitamin D response elements (VDREs) in the ERα gene promoter region. In addition, we established by a fluorometric assay that calcitriol decreased DNA-methyltransferase and histone deacetylase activities. Flow cytometry and qPCR analyses showed that co-treatment of calcitriol with inhibitors of the histone deacetylase and DNA methyltransferase, and genistein significantly increased ERα expression, compared to that observed with the compounds alone. In conclusion, the calcitriol-dependent ERα induction in ER-negative breast cancer cells results from binding of the VDR-RXR complex to VDREs in the ERα gene promoter region, including the downregulation of enzymes with chromatin-remodeling activities. These results may bring forth novel mechanistic knowledge into the actions of calcitriol in ERα-negative breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。