Theranostic Sorafenib-Loaded Polymeric Nanocarriers Manufactured by Enhanced Gadolinium Conjugation Techniques

通过增强钆共轭技术制造的载索拉非尼治疗诊断聚合物纳米载体

阅读:8
作者:Tivadar Feczkó, Albrecht Piiper, Thomas Pleli, Christian Schmithals, Dominic Denk, Stephanie Hehlgans, Franz Rödel, Thomas J Vogl, Matthias G Wacker

Abstract

Today, efficient delivery of sorafenib to hepatocellular carcinoma remains a challenge for current drug formulation strategies. Incorporating the lipophilic molecule into biocompatible and biodegradable theranostic nanocarriers has great potential for improving the efficacy and safety of cancer therapy. In the present study, three different technologies for the encapsulation of sorafenib into poly(d,l-lactide-co-glycolide) and polyethylene glycol-poly(d,l-lactide-co-glycolide) copolymers were compared. The particles ranged in size between 220 and 240 nm, with encapsulation efficiencies from 76.1 ± 1.7% to 69.1 ± 10.1%. A remarkable maximum drug load of approximately 9.0% was achieved. Finally, a gadolinium complex was covalently attached to the nanoparticle surface, transforming the nanospheres into theranostic devices, allowing their localization using magnetic resonance imaging. The manufacture of sorafenib-loaded nanoparticles alongside the functionalization of the particle surface with gadolinium complexes resulted in a highly efficacious nanodelivery system which exhibited a strong magnetic resonance imaging signal, optimal stability features, and a sustained release profile.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。