Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS)

冷蒸汽发生电感耦合等离子体质谱法(CVG-ICP-MS)测定鱼耳石中的汞

阅读:8
作者:Erdal Kenduzler, Mehmet Ates, Zikri Arslan, Melanie McHenry, Paul B Tchounwou

Abstract

A method based on cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS) has been developed for determination of inorganic mercury, Hg(II), and total mercury in fish otoliths. Sodium borohydride (NaBH(4)) was used as the only reducing agent and its concentration was optimized across an acidity gradient to selectively reduce Hg(II) without affecting methylmercury, CH(3)Hg(I). Inorganic Hg was quantitatively reduced to elemental mercury (Hg(0)) with 1 × 10(-4)% (m/v) NaBH(4). CH(3)Hg(I) required a minimum of 0.5% (m/v) NaBH(4) for complete reduction. Increasing the HCl concentration of solution to 5% (v/v) improved the selectivity toward Hg(II) as it decreased the signals from CH(3)Hg(I) to baseline levels. Potassium ferricyanide solution was the most effective in eliminating the memory effects of Hg compared with a number of chelating and oxidizing agents, including EDTA, gold chloride, thiourea, cerium ammonium nitrate and 2-mercaptoethylamine chloride. The relative standard deviation (RSD) was less than 5% for 1.0 μg L(-1) Hg(II) solution. The detection limits were 4.2 and 6.4 ng L(-1) (ppt) for Hg(II) and total Hg, respectively. Sample dissolution conditions and recoveries were examined with ultra-pure CaCO(3) (99.99%) spiked with Hg(II) and CH(3)HgCl. Methylmercury was stable when dissolution was performed with up to 20% (v/v) HCl at 100°C. Recoveries from spiked solutions were higher than 95% for both Hg(II) and CH(3)Hg(I). The method was applied to the determination of Hg(II) and total Hg concentrations in the otoliths of red emperor (CRM 22) and Pacific halibut. Total Hg concentration in the otoliths was 0.038 ± 0.004 μg g(-1) for the red emperor and 0.021 ± 0.003 μg g(-1) for the Pacific halibut. Inorganic Hg accounted for about 25% of total Hg indicating that Hg in the otoliths was predominantly organic mercury (e.g., methylmercury). However, as opposed to the bioaccumulation in tissues, methylmercury levels in otoliths was very low suggesting a different route of uptake, most likely through the deposition of methylmercury available in the water.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。